Extended scaling relations for planar lattice models
نویسندگان
چکیده
It is widely believed that the critical properties of several planar lattice models, like the Eight Vertex or the Ashkin-Teller models, are well described by an effective Quantum Field Theory obtained as formal scaling limit. On the basis of this assumption several extended scaling relations among their indices were conjectured. We prove the validity of some of them, among which the ones by Kadanoff, [13], and by Luther and Peschel, [16].
منابع مشابه
Susceptibility Calculations in Periodic and Quasiperiodic Planar Ising Models
New results are presented for the wavevector-dependent susceptibility of Z-invariant periodic and quasiperiodic Ising Models in the scaling limit, generalizing old results of Tracy and McCoy for the square lattice. Explicit results are worked out for the two leading singular terms of the susceptibility on four regular isotropic lattices. The methods used provide a proof of the extended lattice-...
متن کاملScaling function for self-avoiding polygons
Exactly solvable models of planar polygons, weighted by perimeter and area, have deepened our understanding of the critical behaviour of polygon models in recent years. Based on these results, we derive a conjecture for the exact form of the critical scaling function for planar self-avoiding polygons. The validity of this conjecture was recently tested numerically using exact enumeration data f...
متن کاملPercolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals.
The bond-percolation process is studied on periodic planar random lattices and their duals. The thresholds and critical exponents of the percolation transition are determined. The scaling functions of the percolating probability, the existence probability of the appearance of percolating clusters, and the mean cluster size are also calculated. The simulation result of the percolation threshold ...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملRepresentations of the Virasoro algebra from lattice models
We investigate in details how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic rela...
متن کامل